Super-resolution via iterative phaseretrieval for
blurred and saturated biological images

Eran Gur,” Vassilios Sarafis,»**>® |gor Falat,? Frantisek Vacha,>’ Martin Vacha® and
Zeev Zalevsky®
YFaculty of Engineering, Shenkar College of Engineering & Design, Ramat Gan, 52526, |srael
?Institute of Physical Biology University of South Bohemia, Zamek 136, 37333 Nové Hrady, Czech Republic
3Centre for Plant and Food Science, University of Western Sydney, South Penrith, NSW 1797, Australia
“school of Physics, University of Melbourne, Victoria 3010, Australia
®School of Integrative Biology, University of Queensland, & Lucia Campus, Queensland 4072, Australia
SAnatomical Sciences Interdisciplinary School of Biomedical Sciences, University of Adelaide, SA 5005, Australia.
"Biological Centre Academy of Sciences, BraniSovska 31, 37005 Eeské Budijovice, Czech Republic
8school of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
School of Engineering, Bar Ilan University, Ramat Gan, 52900, | srael
*Corresponding author: gur.eran@gmail.com

Abstract: One of the most fascinating problems addressed today is
retrieving high-resolution data of blurred images obtained from biological
objects. In most cases the research relays either on a priory knowledge of
the image nature or a large number of images (either of the same object or
of different objects obtained by the same imaging setup). If saturation is
added to the blurring, most algorithms fail to sharpen the image and in some
cases researchers decline to use such images as an input. In this work a
single captured blurred and saturated image is given with no a priori
knowledge except of the fact that the primary blurring is due to defocused
imaging setup. The authors suggest a novel three-stage approach for
retrieving higher resolution data from the intensity distribution of the
blurred and saturated image. The core of the process is the phase retrieval
algorithm suggested by Gerchberg and Saxton in 1972. The new method is
explained in details and the agorithm is tested numerically and
experimentally on several images to show the improvement in the sharpness
of the spatial details.
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1. Introduction

In recent years super resolution (SR) has become an extensive research subject by many
researchers. SR refers to the recovery of high resolution data from images that due to
compression, defocus, or other forms of distortion have lost the high frequencies data that was
originally embedded in the image. The methods to overcome this problem of data loss, and
generating super resolved imaging, are quite versatile. In some cases the method is to obtain
data about the blurring function and to use an inverse filter to reconstruct the high-resolution
image [1,2]. Unfortunately, two main problems limit this approach. First, usualy it is
impossible to identify the exact blurring function since it is a result of stochastic noise and
thus only its statistical properties are known. Second, even if the blurring function is known
making an inverse filter might not be practical due to noise (e.g. if the original blurring filter
has low values the inverse filter will amplify the noise).

Other methods use large databases; they are divided into two groups. In the first group
[3,4] one takes a large amount of different test-images that exist in the database both in low
and high resolution and tries to find the deblurring procedure that will yield the best results
with respect to al images. There are two problems with this approach, no two pictures are
identical and therefore one cannot be sure that the extracted inverse blurring procedure will be
applicable for the required new image, and, usualy the blurring procedure varies from one
test-image to another and thus the “anti-blurring” filter will be an average of many filters, and
not an exact filter solution.

The second group of SR techniques uses large database of many low-resolution pictures of
the required subject [5-9]. Since in every picture a different portion of the high-resolution data
ismissing it is possible to extract some high-resolution data from these images and to obtain a
single high-resolution image. The main drawback of these methods is the large database
required in order to increase the resolution of a single image.

Finaly, al the methods mentioned above are used when some sort of pseudo-linear
distortion is present. If one adds saturation to the equation most methods fail completely due
to the non-linear nature of saturation. However, saturation is a none-invited guest in many
images and one has to find away to reconstruct the lost data in the saturated regions as well.

In this work we suggest a hovel approach assuming only one given image — the blurred
and saturated input image obtained by the CCD. The basic assumptions are: (1) most of the
blurring is caused by defocusing in an optical imaging setup, and therefore finding the in-
focus image plane is a primary objective, (2) the saturated regions have low spatial
frequencies and hence there isno point in trying to extract data from these regions. The datato
be formed in these areas must be aresult of an iterative procedure making use of other regions
of the image, where higher frequencies are present.

If one has the complete data of the image obtained (i.e. magnitude and phase) a
recongtruction of the image in different imaging planes is quite simple (since defocus can be
translated to a spherical phase in the Fourier domain), however, in the addressed case only the
intensity distribution is known. In this research work the authors use a three-stage approach to
retrieve higher resolution data from the intensity distribution of the blurred image. The first
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stage includes adding a phase distribution to the magnitude distribution (obtained directly
from the intensity distribution). This is done by means of the phase retrieval algorithm
suggested by Gerchberg and Saxton in 1972 [10], while we add the regquirement of obtaining a
wider spectral distribution for the intensity than the one obtained without the phase
distribution. Once this objective is achieved one can turn to the second stage of the proposed
algorithm in which the blurred image (with its adjacent phase distribution) is virtually placed
at the imaging plane of an optical imaging setup and the imaging setup is tuned to give a high-
resolution image at its output plane. Since there is a range of distances where the obtained
image will contain higher frequencies than the original object, the authors use a decision
criterion maximizing the spectral distribution while regjecting high frequencies that are not a
result of the required object, but rather aresult of the generated phase distribution. In the third
and final stage the authors eliminate high-frequency noise from the image to obtain the
required result.

The proposed image processing approach allows super resolved imaging. The obtained SR
can not only provide more spatial information in comparison to the original de-focused and
saturated image but also to extract (by the proposed extrapolation) even sub wavelength
features due to the correlation that exists between them and their spatial neighbors.

2. Iterative single image super -resolution
2.1 The concept

When using a single image, one must have some sort of a priori knowledge when
reconstruction is required. In the suggested reconstruction technique what the authors know
(or guess) beforehand is that blurring is mainly a result of defocus at the output of an optical
imaging setup. Such an aberration is expected when taking a picture of a biological 3-D
object, since the 3-D structure does not allow the entire image to be in-focus. Since only the
intensity image is available we obtain its magnitude, i.e., take the square root, and attach a
random phase to this magnitude distribution in order to generate a complex field distribution.
Under the assumption of an optical imaging setup with a defocus aberration, the focused
image can be obtained from the given image, assuming the added phase distribution is the
actual one obtained by the setup, smply by its free-space propagating to the focal plane. Since
we do not know the actual phase distribution we must impose a certain constraint on the
spectral distribution of the complex amplitude image, such as spectral bandwidth that is larger
than the current one. Thus, we have two restrictions, the magnitude at the image plane and the
bandwidth at the Fourier plane.

These two redtrictions allow us to bounce back and forth from the image-domain to its
spatia frequency-domain, with a procedure known as iterative phase retrieval (as shown in the
following subsection). As will be shown later, the saturation problem is solved as the saturated
regions are filled with data induced by the spatial structures in the other regions.

2.2 Review: Iterative phaseretrieval

A well-known problem is to determine the phase of a phase only object plane filter that will
produce a required intensity distribution in the Fourier domain. In their paper Gerchberg and
Saxton [10] suggested an iterative approach to do just that. This method is proven to converge
to aphase filter with aminimal mean square error (MSE) [11].

The concept is quite simple: We start with an arbitrary phase-only filter in the object
domain multiplying the input object (the original image), after a Fourier transform we obtain a
Fourier domain image and we impose the require Fourier intensity (actually the magnitude),
leaving the phase as is. An inverse Fourier transform brings us back to the object domain.
Since we demand a phase-only filter we impose the intensity of the input object in this plane.
Next we calculate the Fourier transform and return to the Fourier domain, and so on. This
procedure is required since using only the phase of the complex filter, that converts the input
image exactly to the Fourier image, gives poor results. As can be seen, if we impose half of
the information (intensity or phase) in both the input and the output domains the procedure
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converges monotonically.

In later work Gerchberg [12] and Papoulis [13] suggested the use of this method for SR.
However, both presented relatively simple test cases and assumed the properties of all
iterations to be identical (accept when noise reduction was addressed). An improved
Gerchberg-Papoulis algorithm was recently suggested by Gur and Zalevsky [14]; however, it
supplies good result only if the blurred image is actually a lower resolution version of the
required image. There are of course other methods for obtaining the phase filter, such as
simulated annealing [15], which ensures that the M SE has indeed a global minimum, but it is
time and resources consuming. A more thorough discussion on the phase retrieval problem is
given by Rodenburg [16]. Figure 1 illustrates the original Gerchberg-Saxton algorithm.

n(X)

random®.

An(X) = [ A(x)-explj 2, (x)] |

FFT @, (x)

Au(x) =

Au(9)-eli 2, ]
IFFT

Fig. 1. The Gerchberg-Saxton algorithm. Ai,, ®i, are the input plane amplitude and phase
respectively, Ao, Qo are the Fourier plane amplitude and phase respectively.

2.3 Super-resolution via phaseretrieval

After reviewing the phase-retrieval algorithm we return to the problem at hand. The solution
can be divided into 3 stages. In the first stage, a phase retrieval procedure is required to obtain
a phase distribution for the blurred image. In the image-plane the restriction is quite simple —
the exact magnitude of the given image. However, at the Fourier plane the restrictions are
more flexible. One needs an intensity distribution, which is wider than the one obtained from
the phaseless-image and at the same time has a physical justification. The intuitive solution is
to try and extrapolate the low frequencies data to obtain a wider distribution with the same
low frequencies as the original image. This might be a good solution if the image is a low-
resolution version of the required image but not for a blurred and saturated image; since the
low frequency data in the blurred image is completely different than the origina one (e.g. the
saturation has added significant energy to the lower frequencies). For this reason we impose a
medium-width Gaussian intensity distribution at the Fourier plane. This way we can ensure
that higher frequencies are present in the reconstructed image without stipulating on the
structure of the lower ones. The Gaussian choice is also reasonable assuming an optical setup
with a Gaussian laser beam distribution (that influences the blurring).

At the second stage, after applying the Gerchberg-Saxton algorithm, one has to take the
new complex amplitude image and form a sharper image (hote that adding phase did not alter
the blurriness of the intensity). At this stage the suggested algorithm adds a spherical phase to
the Fourier transform of the complex amplitude image to obtain (after an inverse Fourier
transform) a new complex amplitude. This phase distribution is required to overcome the
opposite phase distribution representing the defocus, given in Eq. (1),

P(p.g)=P(p.a)- exp{jk[d—l_+ di —%J(pz +0° )} (1)

o

where P(p,q) is the aperture in the (p,q) plane, d; and d, are the distances between the image or
the object (respectively) to the imaging lens and k=277 1 with 4 being the optical wavelength.
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The coefficient of the phase increases (or decreases) until sufficient sharpness is achieved.
To define the term of "sufficient” we note that a sharper image has a larger amount of energy
in higher frequencies. However, in the discussed case, some of the extremely high frequencies
are a result of imposing a Gaussian intensity distribution that has very little in common with
the original intensity distribution in the Fourier domain. Hence an optimization is required.
Fortunately, the optimization is quite simple: maximizing the energy ratio between the entire
high frequencies region and the very-high frequencies region, as shown in Eq. (2) and
demonstrated in Fig. 2. Both in Eq. (2) and in Fig. 2, LF stands for low frequencies (present in
the original blurred image), HF stands for high frequencies (reconstructed by the agorithm),
VHF stands for very high frequencies (generated by the reconstruction process though not
related to the original image), and UHF stands for ultra high frequencies (usually distorted by
aliasing and thus removed).

« = maxd Energy(HF + LF) @
xex | Energy(VHF)

One must remember that the Fourier domain in which these calculations are made is the

result of Fourier transforming of only the magnitude of the image (excluding the phase) since

thisisthe distribution that is recorded on a CCD detector.

UHF

VHE

HF+LF

1 65 81 176 192 256

Fig. 2. Frequency regions: Central area contains required frequencies, both LF and HF recently
generated. Intermediate area contains undesired by-product of optimization. Exterior contains
region to be padded with zeros.

Finally the optimal correction is obtained, but very-high frequencies are evident in the
reconstructed image as crater-like holes. Thus, a third and final stage is required. In the third
stage each pixel value (magnitude) is replaced by the weighted average of its eight closest
neighbors, thus eliminating most of the crater noise (and unfortunately a small portion of the
required high frequencies). To complete the procedure, the algorithm is performed for the
second time, using a narrower Gaussian distribution at the phase retrieval stage. This resullt,
though containing less spatial details than the previous one, with fewer holes, and more
important differently located than the holes in the previous result. Thus, any remaining holes
arereplaced by the values of the second image.

The computational cost of this approach is mainly time consumption, as memory
requirements are much lower than for any algorithm using a range of images rather than a
single image. The algorithm suggests a tradeoff between image quality and computation time,
in two different levels. Firgt, if the initial blurred image is given at higher resolution (i.e. a
larger matrix) then more data can be extracted from this image but the phase retrieval
procedure becomes slow (as the FFT has to deal with larger data). Second, when determining
the sharpest image smaller steps lead to a better image quality but require larger amount of
time. For both cases, time consumption increases with image quality.
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3. Computer simulations

Before proceeding to the experimental results we must check the feasibility of the suggested
algorithm. To do so we generate a synthetic blurred image. We start with 128X128 Lena
image depicted in Fig. 3(a) and simulate (using Matlab®) free space propagation from the
image plane. Figure 3(b) demonstrates the result obtained by simulating a 2cm by 2cm object
propagating a distance of 10cm when using a coherent light source at wavelength of 632nm.

(b).

Fig. 3. (). Original 128 by 128 gray-scale object. (b). Blurred out-of-focus image obtained by
free space propagation simulation.

As seen in Fig. 3, the blurred image has lower frequency content than the original image and
the blurring process also causes contrast reversal for several spatial frequencies, as expected in
an imaging setup (note the lips and the eyes). Next we use the proposed algorithm which, not
surprisingly, finds the focal plane reconstructed image to be the sharpest of al. The
reconstructed results are given in Fig. 4(a) before noise reduction and in Fig. 4(b) after
attempting to reduce the noise using the previously described approach.

)

Fig. 4. (a). Reconstructed image without noise reduction. (b). Reconstructed image after noise
reduction.
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As seen from Fig. 4, not only that the noise reduction does not eliminate al of the noise, it
also eliminates some of the required high resolution details. Thus, we can expect that the
algorithm will result with either a sharp but noisy image or a slightly “cleaner” image but with
less detail. A more quantitative measure of the improvement obtained by the suggested
algorithm can be made by calculating the mean square errors (MSES). The MSE between the
origina object and the reconstructed image, shown in Fig. 3(a) and Fig. 4(b), respectively, is
15.7 times smaller than the M SE between the original object and the blurred image, shown in
Fig. 3(a) and Fig. 3(b), respectively.

4. Experimental results

We have applied the proposed algorithm over a set of images that were captured using a
freezing fluorescence microscope. The cryo-imaging system is based on an Olympus 1X70
inverted fluorescence microscope with 100W U-LH100HG mercury lamp as a source of
excitation radiation (Olympus, Japan). The long-distance focal plane of the objectives
(PlanFluorit LCPLFL, 60x, 0.7 NA., Olympus, Japan, and 10x, 0.24 NA., PZO, Poland) are
located outside the optical transmission micro-cryostat (MMR Technologies, USA) where thin
sections of the specimen are placed in glycerol and cooled to 80°K by expanding high-
pressure nitrogen. The microscope is equipped with an Olympus U-MSWB filter cube set
(Olympus, Japan) containing a 420-480nm band-pass excitation filter, 715nm long-pass filter
and 500nm edge dichroic mirror.

The specimens that were observed were of Maize (Zea mays) which is one of a large
number of tropical grasses and cereal plants that are C4 plants [17,18]. The harvested, fully
developed |eaves were hand-chopped in ice-cold isolation medium to thin sections which were
then investigated. For experiments with isolated intact bundle sheath cells and mesophyll,
these cells were obtained by enzymatic digestion with cellulase. Finally the products of these
isolations were also, after being broken, used for fluorescence investigation of intact
chloroplasts as smallest functional photosynthetic compartment of leaves. All samples were
embedded on glass of cryostat holder with glycerol which inhibits the creating of ice crystals
when liquid nitrogen temperature was used. The material was fixed in the cutting water, with
the o; of chloroplast isolation medium modified by the inclusion of 0.5% glutatasidehyde.
Chlorophyll fluorescence of maize samples was excited by blue light of the mercury lamp
defined by the excitation filter of the Olympus U-M SWB filter cube.

The captured images are partly blurred due to many pieces of glass enrooted to the object
and followed by super imposing of different panes of the fluorescent images upon one another
due to the high depth of focus (since the images are not obtained by confocal
methods). The real images which one obtains when generating a high resolution image of the
chloroplasts without freezing (such that one can get closer) should have much higher qudity
and contain more spatial details (this is true for water immersion objectives and aso for
confocal images).

The algorithm that is suggested by the authors was applied over the image depicted in Fig.
5 and which was captured using the above detailed technique.
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Fig. 5. Original 128 by 128 blurred and saturated gray-scale image as captured by a freezing
fluorescence microscope.

The magnitude distribution imposed on the Fourier plane in the Gerchberg-Saxton algorithm
isgiven in Fig. 6(a) and the resulting magnitude after 100 iterations is presented in Fig. 6(b).
Note that the obtained Fourier transform does not contain data in the entire central lobe of the
Gaussian, since some frequencies do not exist in the origina image.

(@). (b).
Fig. 6. (8). Gaussian magnitude isimposed. The image is 256 by 256 pixels and it includes zero
padding. (b). The obtained magnitude distribution.

The result of stage 2 including finding of the optimal focal-plane image, is given in Fig. 7(a).
The result of the third, and final, stage is presented in Fig. 7(b). As seen from the resulted
images the suggested procedure revealed new patterns not only in the blurred regions but also
in regions that were originally in deep saturation.

In order to test the quality of the obtained results we compared them with one common
single image technique that is suggested in the Matlab® blind deconvolution function
‘deconvblind'. We used this function with an initial Gaussian point spread function (PSF),
with size of 3 by 3 pixels and standard deviation of 0.4 of apixel.
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(@. (b).
Fig. 7. (a). Image intensity obtained at optimal focal plane, after second stage of algorithm.
(b). Final intensity distribution of the required image.

The result is shown in Fig. 8(a). As can be seen the resulting image only improves the
contrast, with respect to the origina image, but does not add new spatial information. Figure
8(b) presents the outcome of the new algorithm using the deconvolved image of Fig. 8(a) at
the final stage of the reconstruction. As seen from the image, this does not improve the result
in any noticeable way. The result of executing the algorithm on the deconvolved image as an
initial input is not shown since it contains very little data due to the fact that the deconvolved
image inhibits some of the more important high frequencies present in the original image.

(@). (b).
Fig. 8. (a). Intensity image that is obtained by Matlab® built-in blind deconvolution function.
(b). The final intensity distribution of the required image when using data from the
deconvolved image.

In Fig. 9 we apply the proposed technique on a different type of image (again taken by the
same microscope as previously described) as an input for the algorithm. The figure shows
both the original intensity distribution as well as the recovered one. Once again one may see
how the proposed approach reconstructs high resolution information despite the blurring and
the saturation distortions.
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@- ) ).
Fig. 9. (8). The origina image containing very small amount of spatial details. (b). The
reconstructed image that contains significantly larger amount of spatial information.

Finaly, Fig. 10 contains a portion of the object seen in Fig. 9, zoomed X6, as an input for the
algorithm. The figure shows both the original intensity distribution as well as the recovered
one. In this case a larger portion of the initial image is saturated, thus larger regions remain
without sharp reconstruction.

s B ! .
@). (b).
Fig. 10. (a). Original image with very small amount of spatial details (b). The reconstructed
image with more spatial details.

5. Conclusion

In this paper the authors suggested a novel technique for single-image reconstruction. The
proposed technique makes use of the Gerchberg-Saxton algorithm and eventualy alows
obtaining fine details out of blurred and saturated single image.

The agorithm was tested on several cell images, since biological samples data are an
excellent example for images where the 3-D initial structure of the cell prevents the ability to
obtain fully focused picture. In many cases capturing of such cell-images requires extra
lighting and resulting in saturated regions. Despite of the blurring and the saturation, the
proposed algorithm succeeds in revealing parts of the initial structure of the required image,
doing so without using any object-oriented information.

The performance of the proposed approach was compared with a conventional de-
convolution algorithm and it showed significantly improved reconstruction of lost spatial
information.
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