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Abstract: One of the most fascinating problems addressed today is 
retrieving high-resolution data of blurred images obtained from biological 
objects. In most cases the research relays either on a priory knowledge of 
the image nature or a large number of images (either of the same object or 
of different objects obtained by the same imaging setup). If saturation is 
added to the blurring, most algorithms fail to sharpen the image and in some 
cases researchers decline to use such images as an input. In this work a 
single captured blurred and saturated image is given with no a priori 
knowledge except of the fact that the primary blurring is due to defocused 
imaging setup. The authors suggest a novel three-stage approach for 
retrieving higher resolution data from the intensity distribution of the 
blurred and saturated image. The core of the process is the phase retrieval 
algorithm suggested by Gerchberg and Saxton in 1972. The new method is 
explained in details and the algorithm is tested numerically and 
experimentally on several images to show the improvement in the sharpness 
of the spatial details.  
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1. Introduction  

In recent years super resolution (SR) has become an extensive research subject by many 
researchers. SR refers to the recovery of high resolution data from images that due to 
compression, defocus, or other forms of distortion have lost the high frequencies data that was 
originally embedded in the image. The methods to overcome this problem of data loss, and 
generating super resolved imaging, are quite versatile. In some cases the method is to obtain 
data about the blurring function and to use an inverse filter to reconstruct the high-resolution 
image [1,2]. Unfortunately, two main problems limit this approach. First, usually it is 
impossible to identify the exact blurring function since it is a result of stochastic noise and 
thus only its statistical properties are known. Second, even if the blurring function is known 
making an inverse filter might not be practical due to noise (e.g. if the original blurring filter 
has low values the inverse filter will amplify the noise). 

Other methods use large databases; they are divided into two groups. In the first group 
[3,4] one takes a large amount of different test-images that exist in the database both in low 
and high resolution and tries to find the deblurring procedure that will yield the best results 
with respect to all images. There are two problems with this approach, no two pictures are 
identical and therefore one cannot be sure that the extracted inverse blurring procedure will be 
applicable for the required new image, and, usually the blurring procedure varies from one 
test-image to another and thus the “anti-blurring” filter will be an average of many filters, and 
not an exact filter solution. 

The second group of SR techniques uses large database of many low-resolution pictures of 
the required subject [5-9]. Since in every picture a different portion of the high-resolution data 
is missing it is possible to extract some high-resolution data from these images and to obtain a 
single high-resolution image. The main drawback of these methods is the large database 
required in order to increase the resolution of a single image. 

Finally, all the methods mentioned above are used when some sort of pseudo-linear 
distortion is present. If one adds saturation to the equation most methods fail completely due 
to the non-linear nature of saturation. However, saturation is a none-invited guest in many 
images and one has to find a way to reconstruct the lost data in the saturated regions as well. 

In this work we suggest a novel approach assuming only one given image – the blurred 
and saturated input image obtained by the CCD. The basic assumptions are: (1) most of the 
blurring is caused by defocusing in an optical imaging setup, and therefore finding the in-
focus image plane is a primary objective, (2) the saturated regions have low spatial 
frequencies and hence there is no point in trying to extract data from these regions. The data to 
be formed in these areas must be a result of an iterative procedure making use of other regions 
of the image, where higher frequencies are present. 

If one has the complete data of the image obtained (i.e. magnitude and phase) a 
reconstruction of the image in different imaging planes is quite simple (since defocus can be 
translated to a spherical phase in the Fourier domain), however, in the addressed case only the 
intensity distribution is known. In this research work the authors use a three-stage approach to 
retrieve higher resolution data from the intensity distribution of the blurred image. The first 
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stage includes adding a phase distribution to the magnitude distribution (obtained directly 
from the intensity distribution). This is done by means of the phase retrieval algorithm 
suggested by Gerchberg and Saxton in 1972 [10], while we add the requirement of obtaining a 
wider spectral distribution for the intensity than the one obtained without the phase 
distribution. Once this objective is achieved one can turn to the second stage of the proposed 
algorithm in which the blurred image (with its adjacent phase distribution) is virtually placed 
at the imaging plane of an optical imaging setup and the imaging setup is tuned to give a high-
resolution image at its output plane. Since there is a range of distances where the obtained 
image will contain higher frequencies than the original object, the authors use a decision 
criterion maximizing the spectral distribution while rejecting high frequencies that are not a 
result of the required object, but rather a result of the generated phase distribution. In the third 
and final stage the authors eliminate high-frequency noise from the image to obtain the 
required result. 

The proposed image processing approach allows super resolved imaging. The obtained SR 
can not only provide more spatial information in comparison to the original de-focused and 
saturated image but also to extract (by the proposed extrapolation) even sub wavelength 
features due to the correlation that exists between them and their spatial neighbors. 

2. Iterative single image super-resolution 

2.1 The concept 

When using a single image, one must have some sort of a priori knowledge when 
reconstruction is required. In the suggested reconstruction technique what the authors know 
(or guess) beforehand is that blurring is mainly a result of defocus at the output of an optical 
imaging setup. Such an aberration is expected when taking a picture of a biological 3-D 
object, since the 3-D structure does not allow the entire image to be in-focus. Since only the 
intensity image is available we obtain its magnitude, i.e., take the square root, and attach a 
random phase to this magnitude distribution in order to generate a complex field distribution. 
Under the assumption of an optical imaging setup with a defocus aberration, the focused 
image can be obtained from the given image, assuming the added phase distribution is the 
actual one obtained by the setup, simply by its free-space propagating to the focal plane. Since 
we do not know the actual phase distribution we must impose a certain constraint on the 
spectral distribution of the complex amplitude image, such as spectral bandwidth that is larger 
than the current one. Thus, we have two restrictions, the magnitude at the image plane and the 
bandwidth at the Fourier plane. 

These two restrictions allow us to bounce back and forth from the image-domain to its 
spatial frequency-domain, with a procedure known as iterative phase retrieval (as shown in the 
following subsection). As will be shown later, the saturation problem is solved as the saturated 
regions are filled with data induced by the spatial structures in the other regions. 

2.2 Review: Iterative phase retrieval 

A well-known problem is to determine the phase of a phase only object plane filter that will 
produce a required intensity distribution in the Fourier domain. In their paper Gerchberg and 
Saxton [10] suggested an iterative approach to do just that. This method is proven to converge 
to a phase filter with a minimal mean square error (MSE) [11]. 

The concept is quite simple: We start with an arbitrary phase-only filter in the object 
domain multiplying the input object (the original image), after a Fourier transform we obtain a 
Fourier domain image and we impose the require Fourier intensity (actually the magnitude), 
leaving the phase as is. An inverse Fourier transform brings us back to the object domain. 
Since we demand a phase-only filter we impose the intensity of the input object in this plane. 
Next we calculate the Fourier transform and return to the Fourier domain, and so on. This 
procedure is required since using only the phase of the complex filter, that converts the input 
image exactly to the Fourier image, gives poor results. As can be seen, if we impose half of 
the information (intensity or phase) in both the input and the output domains the procedure 
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converges monotonically. 
In later work Gerchberg [12] and Papoulis [13] suggested the use of this method for SR. 

However, both presented relatively simple test cases and assumed the properties of all 
iterations to be identical (accept when noise reduction was addressed). An improved 
Gerchberg-Papoulis algorithm was recently suggested by Gur and Zalevsky [14]; however, it 
supplies good result only if the blurred image is actually a lower resolution version of the 
required image. There are of course other methods for obtaining the phase filter, such as 
simulated annealing [15], which ensures that the MSE has indeed a global minimum, but it is 
time and resources consuming. A more thorough discussion on the phase retrieval problem is 
given by Rodenburg [16]. Figure 1 illustrates the original Gerchberg-Saxton algorithm. 
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Fig. 1. The Gerchberg-Saxton algorithm. Ain, Φin are the input plane amplitude and phase 
respectively, Aout, Φout  are the Fourier plane amplitude and phase respectively. 

2.3 Super-resolution via phase retrieval 

After reviewing the phase-retrieval algorithm we return to the problem at hand. The solution 
can be divided into 3 stages. In the first stage, a phase retrieval procedure is required to obtain 
a phase distribution for the blurred image. In the image-plane the restriction is quite simple – 
the exact magnitude of the given image. However, at the Fourier plane the restrictions are 
more flexible. One needs an intensity distribution, which is wider than the one obtained from 
the phaseless-image and at the same time has a physical justification. The intuitive solution is 
to try and extrapolate the low frequencies data to obtain a wider distribution with the same 
low frequencies as the original image. This might be a good solution if the image is a low-
resolution version of the required image but not for a blurred and saturated image; since the 
low frequency data in the blurred image is completely different than the original one (e.g. the 
saturation has added significant energy to the lower frequencies). For this reason we impose a 
medium-width Gaussian intensity distribution at the Fourier plane. This way we can ensure 
that higher frequencies are present in the reconstructed image without stipulating on the 
structure of the lower ones. The Gaussian choice is also reasonable assuming an optical setup 
with a Gaussian laser beam distribution (that influences the blurring). 

At the second stage, after applying the Gerchberg-Saxton algorithm, one has to take the 
new complex amplitude image and form a sharper image (note that adding phase did not alter 
the blurriness of the intensity). At this stage the suggested algorithm adds a spherical phase to 
the Fourier transform of the complex amplitude image to obtain (after an inverse Fourier 
transform) a new complex amplitude. This phase distribution is required to overcome the 
opposite phase distribution representing the defocus, given in Eq. (1),  
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where P(p,q) is the aperture in the (p,q) plane, di and do are the distances between the image or 
the object (respectively) to the imaging lens and k=2π/λ with λ being the optical wavelength. 
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The coefficient of the phase increases (or decreases) until sufficient sharpness is achieved. 

To define the term of "sufficient" we note that a sharper image has a larger amount of energy 
in higher frequencies. However, in the discussed case, some of the extremely high frequencies 
are a result of imposing a Gaussian intensity distribution that has very little in common with 
the original intensity distribution in the Fourier domain. Hence an optimization is required. 
Fortunately, the optimization is quite simple: maximizing the energy ratio between the entire 
high frequencies region and the very-high frequencies region, as shown in Eq. (2) and 
demonstrated in Fig. 2. Both in Eq. (2) and in Fig. 2, LF stands for low frequencies (present in 
the original blurred image), HF stands for high frequencies (reconstructed by the algorithm), 
VHF stands for very high frequencies (generated by the reconstruction process though not 
related to the original image), and UHF stands for ultra high frequencies (usually distorted by 
aliasing and thus removed).  

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧ +=

∈ VHFEnergy

LFHFEnergy
maxx

Xx
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One must remember that the Fourier domain in which these calculations are made is the 
result of Fourier transforming of only the magnitude of the image (excluding the phase) since 
this is the distribution that is recorded on a CCD detector. 

UHF

HF+LF

VHF

1           65  81         176  192       256

UHF

HF+LF

VHF

1           65  81         176  192       256  
Fig. 2. Frequency regions: Central area contains required frequencies, both LF and HF recently 
generated. Intermediate area contains undesired by-product of optimization. Exterior contains 
region to be padded with zeros. 

 
Finally the optimal correction is obtained, but very-high frequencies are evident in the 
reconstructed image as crater-like holes. Thus, a third and final stage is required. In the third 
stage each pixel value (magnitude) is replaced by the weighted average of its eight closest 
neighbors, thus eliminating most of the crater noise (and unfortunately a small portion of the 
required high frequencies). To complete the procedure, the algorithm is performed for the 
second time, using a narrower Gaussian distribution at the phase retrieval stage. This result, 
though containing less spatial details than the previous one, with fewer holes, and more 
important differently located than the holes in the previous result. Thus, any remaining holes 
are replaced by the values of the second image. 

The computational cost of this approach is mainly time consumption, as memory 
requirements are much lower than for any algorithm using a range of images rather than a 
single image. The algorithm suggests a tradeoff between image quality and computation time, 
in two different levels. First, if the initial blurred image is given at higher resolution (i.e. a 
larger matrix) then more data can be extracted from this image but the phase retrieval 
procedure becomes slow (as the FFT has to deal with larger data). Second, when determining 
the sharpest image smaller steps lead to a better image quality but require larger amount of 
time. For both cases, time consumption increases with image quality. 
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3. Computer simulations 

Before proceeding to the experimental results we must check the feasibility of the suggested 
algorithm. To do so we generate a synthetic blurred image. We start with 128X128 Lena 
image depicted in Fig. 3(a) and simulate (using Matlab®) free space propagation from the 
image plane. Figure 3(b) demonstrates the result obtained by simulating a 2cm by 2cm object 
propagating a distance of 10cm when using a coherent light source at wavelength of 632nm.  

  
(a).     (b). 

Fig. 3. (a). Original 128 by 128 gray-scale object. (b). Blurred out-of-focus image obtained by 
free space propagation simulation. 

As seen in Fig. 3, the blurred image has lower frequency content than the original image and 
the blurring process also causes contrast reversal for several spatial frequencies, as expected in 
an imaging setup (note the lips and the eyes). Next we use the proposed algorithm which, not 
surprisingly, finds the focal plane reconstructed image to be the sharpest of all. The 
reconstructed results are given in Fig. 4(a) before noise reduction and in Fig. 4(b) after 
attempting to reduce the noise using the previously described approach. 

  
(a).     (b). 

Fig. 4. (a). Reconstructed image without noise reduction. (b). Reconstructed image after noise 
reduction. 
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As seen from Fig. 4, not only that the noise reduction does not eliminate all of the noise, it 
also eliminates some of the required high resolution details. Thus, we can expect that the 
algorithm will result with either a sharp but noisy image or a slightly “cleaner” image but with 
less detail. A more quantitative measure of the improvement obtained by the suggested 
algorithm can be made by calculating the mean square errors (MSEs).  The MSE between the 
original object and the reconstructed image, shown in Fig. 3(a) and Fig. 4(b), respectively, is 
15.7 times smaller than the MSE between the original object and the blurred image, shown in 
Fig. 3(a) and Fig. 3(b), respectively. 

4. Experimental results 

We have applied the proposed algorithm over a set of images that were captured using a 
freezing fluorescence microscope. The cryo-imaging system is based on an Olympus IX70 
inverted fluorescence microscope with 100W U-LH100HG mercury lamp as a source of 
excitation radiation (Olympus, Japan). The long-distance focal plane of the objectives 
(PlanFluorit LCPLFL, 60x, 0.7 NA., Olympus, Japan, and 10x, 0.24 NA., PZO, Poland) are 
located outside the optical transmission micro-cryostat (MMR Technologies, USA) where thin 
sections of the specimen are placed in glycerol and cooled to 800K by expanding high-
pressure nitrogen. The microscope is equipped with an Olympus U-MSWB filter cube set 
(Olympus, Japan) containing a 420–480nm band-pass excitation filter, 715nm long-pass filter 
and 500nm edge dichroic mirror. 

The specimens that were observed were of Maize (Zea mays) which is one of a large 
number of tropical grasses and cereal plants that are C4 plants [17,18]. The harvested, fully 
developed leaves were hand-chopped in ice-cold isolation medium to thin sections which were 
then investigated. For experiments with isolated intact bundle sheath cells and mesophyll, 
these cells were obtained by enzymatic digestion with cellulase. Finally the products of these 
isolations were also, after being broken, used for fluorescence investigation of intact 
chloroplasts as smallest functional photosynthetic compartment of leaves. All samples were 
embedded on glass of cryostat holder with glycerol which inhibits the creating of ice crystals 
when liquid nitrogen temperature was used. The material was fixed in the cutting water, with 
the σi of chloroplast isolation medium modified by the inclusion of 0.5% glutatasldehyde. 
Chlorophyll fluorescence of maize samples was excited by blue light of the mercury lamp 
defined by the excitation filter of the Olympus U-MSWB filter cube. 

The captured images are partly blurred due to many pieces of glass enrooted to the object 
and followed by super imposing of different panes of the fluorescent images upon one another 
due to the high depth of focus (since the images are not obtained by confocal 
methods). The real images which one obtains when generating a high resolution image of the 
chloroplasts without freezing (such that one can get closer) should have much higher quality 
and contain more spatial details (this is true for water immersion objectives and also for 
confocal images). 

The algorithm that is suggested by the authors was applied over the image depicted in Fig. 
5 and which was captured using the above detailed technique. 
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Fig. 5. Original 128 by 128 blurred and saturated gray-scale image as captured by a freezing 
fluorescence microscope. 

The magnitude distribution imposed on the Fourier plane in the Gerchberg-Saxton algorithm 
is given in Fig. 6(a) and the resulting magnitude after 100 iterations is presented in Fig. 6(b). 
Note that the obtained Fourier transform does not contain data in the entire central lobe of the 
Gaussian, since some frequencies do not exist in the original image. 

  
(a).     (b). 

Fig. 6. (a). Gaussian magnitude is imposed. The image is 256 by 256 pixels and it includes zero 
padding. (b). The obtained magnitude distribution. 

The result of stage 2 including finding of the optimal focal-plane image, is given in Fig. 7(a). 
The result of the third, and final, stage is presented in Fig. 7(b). As seen from the resulted 
images the suggested procedure revealed new patterns not only in the blurred regions but also 
in regions that were originally in deep saturation. 

In order to test the quality of the obtained results we compared them with one common 
single image technique that is suggested in the Matlab® blind deconvolution function 
‘deconvblind'. We used this function with an initial Gaussian point spread function (PSF), 
with size of 3 by 3 pixels and standard deviation of 0.4 of a pixel. 
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(a).     (b). 

Fig. 7. (a). Image intensity obtained at optimal focal plane, after second stage of algorithm.   
(b). Final intensity distribution of the required image. 

The result is shown in Fig. 8(a). As can be seen the resulting image only improves the 
contrast, with respect to the original image, but does not add new spatial information. Figure 
8(b) presents the outcome of the new algorithm using the deconvolved image of Fig. 8(a) at 
the final stage of the reconstruction. As seen from the image, this does not improve the result 
in any noticeable way. The result of executing the algorithm on the deconvolved image as an 
initial input is not shown since it contains very little data due to the fact that the deconvolved 
image inhibits some of the more important high frequencies present in the original image. 

 

 

 
 

(a).     (b). 
Fig. 8. (a). Intensity image that is obtained by Matlab® built-in blind deconvolution function. 
(b). The final intensity distribution of the required image when using data from the 
deconvolved image. 

In Fig. 9 we apply the proposed technique on a different type of image (again taken by the 
same microscope as previously described) as an input for the algorithm. The figure shows 
both the original intensity distribution as well as the recovered one. Once again one may see 
how the proposed approach reconstructs high resolution information despite the blurring and 
the saturation distortions. 
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(a).     (b). 

Fig. 9. (a). The original image containing very small amount of spatial details. (b). The 
reconstructed image that contains significantly larger amount of spatial information. 

Finally, Fig. 10 contains a portion of the object seen in Fig. 9, zoomed X6, as an input for the 
algorithm. The figure shows both the original intensity distribution as well as the recovered 
one. In this case a larger portion of the initial image is saturated, thus larger regions remain 
without sharp reconstruction. 

  
(a).     (b). 

Fig. 10. (a). Original image with very small amount of spatial details (b). The reconstructed 
image with more spatial details. 

5. Conclusion 

In this paper the authors suggested a novel technique for single-image reconstruction. The 
proposed technique makes use of the Gerchberg-Saxton algorithm and eventually allows 
obtaining fine details out of blurred and saturated single image.  

The algorithm was tested on several cell images, since biological samples data are an 
excellent example for images where the 3-D initial structure of the cell prevents the ability to 
obtain fully focused picture. In many cases capturing of such cell-images requires extra 
lighting and resulting in saturated regions. Despite of the blurring and the saturation, the 
proposed algorithm succeeds in revealing parts of the initial structure of the required image, 
doing so without using any object-oriented information. 

The performance of the proposed approach was compared with a conventional de-
convolution algorithm and it showed significantly improved reconstruction of lost spatial 
information. 
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